
.net technique/backend

108 .net may 2011

 Knowledge needed HTML, basic use of Command-Prompt, Terminal.app or Bash

 Requires Ruby, Rails, SQLite, browser, text editor

 Project time 2-3 hours

Rails has become a favourite of devs looking for a powerful, agile
way to build web apps quickly and cleanly. Version 3.0 marked a
turning point when it merged with the more modular Merb. The

result is a stronger, lighter framework that’s suitable for projects of all sizes.
Here we’re going to run through your first steps with Ruby on Rails. First we

need the parts installed. This process varies between OSes, so pick your path
below and then continue to the next section. We have four tools:

1. Ruby – The underlying language Rails is written in.
2. Gem – A package manager for managing and installing Ruby libraries.
3. Rails – Obviously.
4. SQLite – A lightweight SQL database.

Installation on Windows
Ruby’s heritage is in Unix, but you can get a version for Windows by
downloading the RubyInstaller from rubyinstaller.org. Go to Downloads and
select Ruby 1.8.7-pXXX, where X is the patch number (302 at the time of
writing). Install ir, making sure to check the option adding Ruby to your path.
Next, open a prompt by selecting Start Menu > Run > "cmd" then type:

 $ ruby --version
 > ruby 1.8.7 (2010-08-16 patchlevel 302) [i386-mingw32]

If you don’t see something similar to the screenshot below, see rubyinstaller.org
for support. To get SQLite, download the administration tool (sqlite-XXX.zip) and

Rails build a blog
with Rails 3.0

build a blog
with Rails 3.0

build a blog

Part one In the fi rst of a two-part tutorial, Gavin Montague explains how to
take your fi rst steps with Ruby on Rails 3.0 by building a generic blog

the DLL (sqlitedll-XXX.zip) from www.sqlite.org/download.html. Copy the
contents of both zips to C:\Ruby\bin then use <gem> to install Ruby support.

 $ gem install sqlite3-ruby

Installation on OS X
Although both Ruby and Rails are included with more recent versions of OS X,
they’re too old for our purposes. We could individually install newer versions,
but we’ll use port to save time. Install port by following the instructions
at www.macports.org/install.php with the pkg installer. Note that you’ll also
need the Apple Developer tools, which can be found on your OS X install disk
or at developer.apple.com. With port installed, open a new Terminal
(/Application/Utilities/Terminal.app) and run the following:

 $ sudo port install ruby
 $ sudo gem update --system
 $ sudo gem uninstall rubygems-update
 $ sudo gem install rails
 $ sudo gem install sqlite3-ruby

Installation on Linux
Ruby is very well supported by every Linux, but unfortunately the installation
specifics vary between distributions. Your best bet is to check on the
distribution’s support forums for the correct path. Regardless of your operating
system, you can now install Rails with the command:

 $ gem install rails --version=3.0.1

Keep your prompt open – we’ll be using it a lot.

Start screen The default Ruby on Rails start screen – if you can’t see this at
localhost:3000, then something’s gone horribly wrong!

Install Ruby The best way to get Ruby running on Windows is with rubyinstaller.org.
Remember to add Ruby to your path during installation

NET214.dev_tut_rails 108 3/7/11 3:05:07 PM

 .net may 2011 109 next>

.net technique/backend

Ruby’s syntax lends itself to very clear expression of ideas and a working
grasp of its simple but powerful features can be picked up in a few hours.
In technical terms, Ruby is a truly object-oriented language. This means that
everything you interact with is treated as a self-contained ‘box’ of data that you
perform operations on via method. For example:

 a = 'a string"
 a.reverse
 => "gnirts a"
 array = [3, 2, 1]
 array.sort
 => [1, 2, 3]

In Ruby you’ll very likely spend most of your time working with classes, best
thought of as a blueprint for creating objects. For example:

 class Person
 attr_accessor :name
 def initialize(name)
 self.name = name
 end
 def greet
 "Hi, I'm #{name}"
 end
 end
 bob = Person.new "Bob"
 bob.greet
 => "Hi, I'm Bob"

With Ruby, parenthesis are optional, and certain non-alphabetic characters can
be used in function names, so it’s perfectly valid to write:

 name = "bob"
 name.is_a? String
 # => true
 array = ["apple", "orange"]
 array.empty?
 #=> false

This makes Ruby ideal for writing very declarative, easily read code. Below is
executable Rails code, but its meaning is quite apparent, even to non-coders:

 before_save :set_timestamp, :unless=>:new_record?

One final point that often confuses newcomers is the use of meta-programming,
or code-that-writes-code, as a standard tool. Rails makes quite heavy use of

In-browser tutorial If you’d like to try Ruby but can’t install it on your machine,
there’s a comprehensive interactive tutorial at tryruby.org that runs in your browser

meta-programming internally to write methods as they’re needed. With the
Article class we’ll shortly build I can search the database with either:

 Article.find(:first, :conditions=>{:title=>"foo"})

or:

 Article.find_by_title "foo"

Both methods do the same thing, but the trick is that the second one doesn’t
exist! Thanks to some meta-programming, Rails is able to take the more
readable second version and turn it into the first longhand version as it’s
needed. Rails gives you a stack of these ‘magic’ methods, which help keep your
code concise and readable but can occasionally lead to some hard-to-
understand bugs. We’ll be focusing on Rails from here on in, but I recommend
you complete the tutorial at tryruby.org to get a feel for the language.

Our application
We’re going to build a generic blog. You’ll write articles and save them to a
database. People will be able to browse them and, in part two, leave comments.
Go to your prompt, navigate to your preferred working directory, with the cd
command in everything else, and create your Rails app with the command:

 $ cd ~/Desktop
 $ rails blog

You’ll see a bunch of output whizz by and a folder called blog appear,
containing the outline of an app. Rails considers itself ‘opinionated’ – there are
certain conventions about how you’re expected to lay out your files and code,
and woe betide those who don’t. The advantage of this almost rabid devotion
to convention is that the framework can make assumptions about your code:
this leads to more reusable code and less effort. The first layer of this opinion is
the layout of files in the project. A default Rails app contains 15 folders and
files at the top level. Here, we’ll only concern ourselves with app, db and public.

The App Folder
Rails adheres to the Model/View/Controller design pattern. This is an
abstracted way of thinking about where responsibility for different behaviours
lives. Rails maps these layers to three eponymous folders in /app.
Model: A meaningful collection of data. Users, messages, calendars and events
are suitable model objects. It’s up to the model to handle its own storage
(maybe to a file or a database) and ensure that its internal state is both
accurate and valid. In our blog, Articles and Comments will be models.
View: The view deals solely with presentation. For web apps it’s generally the
generation of HTML, but could be XML, JSON or PDF. We’ll have views
to display lists of articles, forms for editing them, and so forth.

But it doesn’t scale!
Exploding the biggest myth about RoR
One of the most persistent Rails myths is that it “doesn’t scale”. The usual
evidence cited for this is Twitter. Its frequent downtime in 2008/9 was
widely attributed to Rails not being able to support a high-traffic site. In
truth, most of Twitter’s problems lay in its architecture: what was really
a messaging system had been built as a web app and that was causing
growing pains. Twitter still uses Rails for its web-facing elements, but has
re-engineered its underlying systems in more suitable languages.
 In terms of web-app architecture, Rails actually scales pretty darn
well. The LinkedIn Facebook app BumperSticker runs on Rails and serves
many million page-views a month. The ecommerce juggernaut Groupon
handles around nine million visits a month with Rails and the original
Rails site, Basecamp, happily serves over 9,000 requests per minute.
 In truth, scalability is never an easy problem to solve and most apps
never reach the point where it becomes an issue. Rather than worrying
about how your site will cope when it’s getting a billion hits, leverage
Rails to make building great apps easy and worry about scaling later.

NET214.dev_tut_rails 109 3/7/11 3:05:09 PM

.net technique/backend

<prev 110 .net may 2011

Controller: The middleman – dealing with interpreting the incoming
request and lining up the correct Models to pass to the View for display.

In our app, the controller decides which Article is to be operated on, what the
operation is and what templates to render.

The usefulness of this approach is that it creates clear areas of responsibility.
For example, an Article will have certain requirements before it can be
considered ‘valid’ (eg it must have a title and some text).

The controller will never know what the requirements are, but it will know
how to ask an article object, ‘Are you valid?’. Similarly, Articles knows nothing
about HTML, but the View knows how to take the data from a Model and
represent it as a form, table or XML.

 $ rails generate scaffold article title:string body:text published_at:datetime

This generates a ‘scaffold’ – a boilerplate version of our MVC stack for
the Article class. This scaffold contains just enough code to enable us to
manipulate a database table called articles via a Model, a Controller and
some Views.

Let’s create the database table.

 $ rake db:migrate

Rails has created an SQLite database and built a table to store our objects. It
does this through migrations: timestamped Ruby files, which can be found in
/db/migrate. Notice how we’ve not written anything that ties us to a kind of
database. If I was running MySQL, PostgresSQL or SQLITE this migration would
generate the correct SQL to build the table. By writing in Ruby rather than SQL
we remain adaptable.

If you download a suitable SQLite management tool from www.sqlite.org/
cvstrac/wiki?p=ManagementTools and open the sqlite file in /db you’ll see we
now have a table called articles containing the columns we specified above.

To see our scaffold in action, start the development web server. If you need
to stop the server, press Control+C:

 $ rails server

Open up your browser and visit http://localhost:3000. You’ll be presented
with the default Rails page – this is just the static index.html file in /public and
can be ignored for the most part. Visit http://localhost:3000/articles and you’ll
be presented with an empty list. Click on New to create an article then try

editing and deleting. The scaffold has given us enough code to manipulate
the articles table.

On seeing the scaffold, most people react in one of two ways – “OMG! Rails
writes code for me!” or “Oh, Rails is just a boilerplate generator”. In fact, Rails is
neither of these things. The scaffold is intended as a training wheel and a tool
for bootstrapping development. As its name suggests, scaffolding gives support
during construction: it’s not meant to be permanent.

What the scaffold does give us is an idiomatic example of how to write code
in Rails. We’ll walk through that code now.

We’ll start with the controller. Open app/controllers/articles_controller.rb in
your editor.

Visiting http://localhost:3000/article/1/edit will create an articles_controller
and run its edit action, passing in the parameter {:id=>1}. The output from this
method is sent back to the browser. Don’t worry about how this happens for
now: Rails routing is very customisable, but the default behaviour is fine for us.
Let’s look at some of our controller methods.

Show
 def show
 @article = Article.find(params[:id])
 respond_to do |format|
 format.html # show.html.erb
 format.xml { render :xml => @article }
 end
 end

Good design in Rails generally equates to lots of small methods doing one
thing, and this method is no exception. We first try to fetch an Article with
a primary key matching the id passed to us. Data passed through from the
browser is made available via the params object (if you’ve ever used PHP,
params is basically analogous to $_REQUEST). Notice that we have an @
prefix on the article variable – this makes it into an instance variable, and
available in the template.

Next, we have the responds_to block. This concerns itself with deciding
what to output back to the user. If the user has asked for HTML we don’t have
to specify any behaviour; by convention Rails will render the template in /app/
views/articles/show. Alternatively, the scaffold sets can output our article as
XML. Try going back to your browser and appending .xml to the URL. You may
have to view-source, but you should see an XML version of the article object.
This can be very convenient for passing data between web servers and
releasing APIs for your application.

The template for our show action is very basic – it simply prints out the
various fields of our Article object.

 <p>Title:<%= @article.title %></p>

There are various ways of writing templates in Rails, but the default is erb:
embedded Ruby. Syntactically, this is closely related to PHP in that the templates
actually contain running Ruby code. Although this makes it possible to write
‘real’ code in the template, the views should only concern themselves with the
logic about how the data is presented: anything smarter than that is up to the
Controller and Model.

Edit
Now let’s look at the process for editing and updating our articles. The edit
method is even more trivial than show – all the controller has to do is ask the
Model to fetch the correct row from the database and then pass it onto the
edit.html.erb template, again through the magic of convention.

So what is our edit template supposed to do? Well, it should output a form
representing the Article we retrieved in the controller. Rails provides a library
for this and it integrates very neatly with our ActiveRecord based models.
Regardless of whether the user is creating a new Article or editing an existing
one, the form will look the same. The scaffold has extracted the common part
of the page to a separate template called _form.html.erb. In Rails parlance this
is a partial – a template used by other templates.

The form partial is more complex than our show action, but it’s still
quite readable. Try viewing-source on the rendered page in your browser
and working through the lines of code in the template to see how the form
gets built.

Pure and simple Ruby is a very clear language – even without knowing Ruby most of
the functions of the controller should be apparent

 An Article will have certain
 requirements before it can
 be considered ‘valid’

NET214.dev_tut_rails 110 3/7/11 3:05:11 PM

 .net may 2011 111

.net technique/backend

The scaffold It's not the prettiest of things, but the Rails scaffold command will give
you an easy foothold in getting your application up and running

Update
Our edit method is the most complex one in the scaffold, but it’s still a bit short.

 def update
 @article = Article.find(params[:id])
 respond_to do |format|
 if @article.update_attributes(params[:article])
 format.html { redirect_to(@article, :notice => 'Article was successfully
 updated.') }
 else
 format.html { render :action => "edit" }
 end
 end
 end

The method begins with us finding the object we want to update, as with show
and edit, but then we have a little bit of logic. The params object contains all
the data passed from our form in a Hash (like an array, but with non-numeric
keys). We can pass this Hash directly to our Article, which replaces its title, body
etc and then attempts to save to the database. If the object is saved we call
redirect_to to send the browser to a different URL (we’ll look at how Rails
knows where to redirect to in part two). If the save fails we need to explicitly
tell Rails to render the edit template because the user needs to know
something went wrong. But what could possibly go wrong?

Models
Now let’s look at the class we’ve been manipulating all this time. Considering
that an Article knows what fields it has, can read/write to a database and
search its table, it’s probably quite a big file. Open /app/models/article.rb:

 class Article < ActiveRecord::Base
 end

Where’s all this behaviour coming from, then?
The top line of this file is our class definition – it says that Article inherits

from the ActiveRecord::Base class.
Inheritance is too big a topic to cover here, but it’s fundamental to object-

oriented Programming.
In essence it allows methods defined in our parent, or superclass, to be

used, or inherited, in the child class. ActiveRecord knows how to talk to the
database, work out what table maps to what class and do all the heavy lifting
of SQL so our Articles get the ability for free.

Notice that we don’t even have to tell it what table it should read/write with
and what fields in should have – Rails intelligently maps the Article class to the
articles table in the DB. It then goes on to determine that our article should
have a title, body etc because that’s what columns we have in the DB.

We said that Articles ought to require a title before they can be saved. We
can implement this by asking the Model to validate one or more conditions.
Add the following inside your Article class, then go back to your browser and
try to create an Article with no title or an overly long one.

 class Article < ActiveRecord::Base
 validates :title,
 :presence => true,
 :length => {:maximum => 25}
 end

This adds a rule: in order to be valid, a title must be present and can’t be
more than 25 characters. With the validation callback we say, ‘Make sure all our
validation conditions are mean – if they aren’t then don’t save the object’.

validates is an example of a callback function. ActiveRecord defines several
points in the object lifecycle where we can ask for code to be run without
having to get down into the guts. Say we wanted to add a list of all the times
an article had been edited. Add the following inside the Article class.

 before_save :append_timestamp, :unless=>:new_record?
 def append_timestamp
 self.body << "\nEdited at #{Time.now}"
 end

Each time you save your Article it will call append_timestamp as one of its
before_save callbacks.

This has been a very quick introduction to Rails. In part two next issue we’ll
dive a bit more deeply, using Rails to manage the relationship between
Comments and Articles. We’ll also see how we can leverage the huge number
of third-party plug-ins and gems to add features to your application. ●

 About the author
 Name Gavin Montague
 Site leftbrained.co.uk

 Areas of expertise Rails, usability.
 Clients BBC, News International, Dell, National Trust for
Scotland, itison.com
 Ideal dinner party guest Scout Brandie. That’s not funny,
but he promised to stop annoying me if he got a mention

Programming Ruby
pragprog.com/titles/ruby/
programming-ruby
Deals with 1.9, which has some
differences from 3, but nothing to
cause problems for a learner.

RailsGuides
guides.rubyonrails.org
To delve deeper into Rails, the best
sources of written information are
the community-maintained guides
available from the Rails website.

Railscasts
railscasts.com
Ryan Bates hosts a catalogue of
almost 250 five- to 10-minute
videos, suitable for all levels.

Rails API
apidock.com/rails
The full API is available on the
official Rails site, but I prefer the
version at apidock.com.

Resources Where to learn more

NET214.dev_tut_rails 111 3/7/11 3:05:17 PM

